Frequency of Antibiotic-Producing Pseudomonas spp. in Natural Environments.

نویسندگان

  • J M Raaijmakers
  • D M Weller
  • L S Thomashow
چکیده

The antibiotics phenazine-1-carboxylic acid (PCA) and 2,4-diacetylphloroglucinol (Phl) are major determinants of biological control of soilborne plant pathogens by various strains of fluorescent Pseudomonas spp. In this study, we described primers and probes that enable specific and efficient detection of a wide variety of fluorescent Pseudomonas strains that produce various phenazine antibiotics or Phl. PCR analysis and Southern hybridization demonstrated that specific genes within the biosynthetic loci for Phl and PCA are conserved among various Pseudomonas strains of worldwide origin. The frequency of Phl- and PCA-producing fluorescent pseudomonads was determined on roots of wheat grown in three soils suppressive to take-all disease of wheat and four soils conducive to take-all by colony hybridization followed by PCR. Phenazine-producing strains were not detected on roots from any of the soils. However, Phl-producing fluorescent pseudomonads were isolated from all three take-all-suppressive soils at densities ranging from approximately 5 x 10(sup5) to 2 x 10(sup6) CFU per g of root. In the complementary conducive soils, Phl-producing pseudomonads were not detected or were detected at densities at least 40-fold lower than those in the suppressive soils. We speculate that fluorescent Pseudomonas spp. that produce Phl play an important role in the natural suppressiveness of these soils to take-all disease of wheat.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Antibiotic Resistance of Pseudomonas spp. Isolated from Different Wards of Shahid Rajai Hospital in Tonekabon, 2010-2011

Abstract: Background and Objective: A wide variety of opportunistic pathogens has been detected in hospital surfaces. Among these , Pseudomonas species are one of the leading causes of nosocomial infections, frequently found in hospital environments. The purpose of this study was identification of antimicrobial susceptibility of Pseudomonas spp. isolated from different Section of ShahidRajaeii ...

متن کامل

فراوانی اینتگرون‌های کلاس I و II در ایزوله‌های بالینی سودوموناس آئروژینوزا مولد متالوبتالاکتاماز

Background and Objective: Pseudomonas aeruginosa is an opportunistic nosocomial pathogen. Evidence suggests that the incidence of enzyme-producing strains of Pseudomonas aeruginosa Metalo Beta Lactamases (MBL) is a major problem in the treatment of infections caused by this organism. The aim of this study was to investigate the frequency of class I and II integrons among metalobetalactamase pro...

متن کامل

Characterization of native ethanol producing Zymomonas spp. isolated from natural environments in Iran

Ethanol is renewable and safe fuel and it is mainly produced based on microbial fermentation. The present study aims to isolate and identify ethanol producing Zymomonas spp. from natural environments with characterization, optimization and evaluation of their ethanol productivity. Samples were screened for ethanol producing bacteria on RM medium. Ethanol producing isolates were selected for cha...

متن کامل

Natural Plant Protection by 2,4-Diacetylphloroglucinol– Producing Pseudomonas spp. in Take-All Decline Soils

Take-all decline (TAD) is a natural biological control of the wheat root disease “take-all” that develops in response to the disease during extended monoculture of wheat. The research to date on TAD has been mostly descriptive and no particular occurrence is yet fully understood. We demonstrate that root-associated fluorescent Pseudomonas spp. producing the antibiotic 2,4-diacetylphloroglucinol...

متن کامل

Frequency, Diversity, and Activity of 2,4-Diacetylphloroglucinol-Producing Fluorescent Pseudomonas spp. in Dutch Take-all Decline Soils.

ABSTRACT Natural suppressiveness of soils to take-all disease of wheat, referred to as take-all decline (TAD), occurs worldwide. It has been postulated that different microbial genera and mechanisms are responsible for TAD in soils from different geographical regions. In growth chamber experiments, we demonstrated that fluorescent Pseudomonas spp. that produce the antibiotic 2,4-diacetylphlorog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 63 3  شماره 

صفحات  -

تاریخ انتشار 1997